If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(x^2)+8x-16=0
a = 4; b = 8; c = -16;
Δ = b2-4ac
Δ = 82-4·4·(-16)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{5}}{2*4}=\frac{-8-8\sqrt{5}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{5}}{2*4}=\frac{-8+8\sqrt{5}}{8} $
| 5/2t-t=3+3/25t | | -12a^2-5a-28=0 | | 252p=7752000 | | -4y+6(-3y+9)=8-7(3-y) | | 4-14-z+2=0 | | -12=4(c+5)+8 | | 90-(2x-4)=(94-2x) | | 2-3/8x=5/8x | | 5x/2−7=2x−7/6 | | 4-7x=2(2x+2) | | 6(x+3)-6=3x+3(3+x) | | -16x^2+90x-14=0 | | 5x2−7=2x−76 | | 1/2(2x-3)=11 | | 420=7/6v | | X^2+y^2=394 | | ((4x-3)/5)-(4x/3)=(2(x-13/15) | | 3(3n+1)=8(7n+6)+5 | | 7/3x+3/8=5/6 | | x=(x^2-9x+20)/4x | | 6(3a+8)=-22+8a | | 3(x-9)^2=81 | | 1/5x+1/6x=11 | | 34-2x=5x+1 | | y1=y2 | | 10+3m=31 | | 2-x=-2x-9 | | (8-8i)^2=-128i | | X-24/8=x/6 | | 4/3+3m/4=37/12 | | 3y–4=y+10 | | 11(4p+4)-4p=4(7p-7 |